1.Introduction
2.Categories
3.The Category of Groups
4.Subgroups
5.Normal Subgroups
6.Homomorphisms
7.Direct Products and Sums of Groups
8.Relations
9.The Category of Vector Spaces
10.Subspaces
11.Linear Mappings; Direct Products and Sums
12.From Real to Complex Vector Spaces and Back
13.Duals
14.Multilinear Mappings; Tensor Products
15.Example: Minkowski Vector Space
16.Example: The Lorentz Group
17.Functors
18.The Category of Associative Algebras
19.The Category of Lie Algebras
20.Example: The Algebra of Observables
21.Example: Fock Vector Space
22.Representations: General Theory
23.Representations on Vector Spaces
24.The Algebraic Categories: Summary
25.Subsets and Mappings
26.Topological Spaces
27.Continuous Mappings
28.The Category of Topological Spaces
29.Nets
30.Compactness
31.The Compact-Open Topology
32.Connectedness
33.Example: Dynamical Systems
34.Homotopy
35.Homology
36.Homology: Relation to Homotopy
37.The Homology Functors
38.Uniform Spaces
39.The Completion of a Uniform Space
40.Topological Groups
41.Topological Vector Spaces
42.Categories: Summary
43.Measure Spaces
44.Constructing Measure Spaces
45.Measurable Functions
46.Integrals
47.Distributions
48.Hilbert Spaces
49.Bounded Operators
50.The Spectrum of a Bounded Operator