Preface to the Second Edition
Introduction
Ⅰ.Modules
1.Modules
2.The Group of Homomorphisms
3.Sums and Products
4.Free and Projective Modules
5.Projective Modules over a Principal Ideal Domain
6.Dualization, Injective Modules
7.Injective Modules over a Principal Ideal Domain
8.Cofree Modules
9.Essential Extensions
Ⅱ.Categories and Functors
1.Categories
2.Functors
3.Duality
4.Natural Transformations
5.Products and Coproducts; Universal Constructions
6.Universal Constructions (Continued); Pull-backs and Push-outs
7.Adjoint Functors
8.Adjoint Functors and Universal Constructions
9.Abelian Categories
10.Projective, Injective, and Free Objects
Ⅲ.Extensions of Modules
1.Extensions
2.The Functor Ext
3.Ext Using Injectives
4.Computation of some Ext-Groups
5.Two Exact Sequences
6.A Theorem of Stein-Serre for Abelian Groups
7.The Tensor Product
8.The Functor Tor
Ⅳ.Derived Funetors
1.Complexes
2.The Long Exact (Co) Homology Sequence
3.Homotopy
4.Resolutions
5.Derived Functors
6.The Two Long Exact Sequences of Derived Functor
7.The Functors ExtnΛ Using Projectives
8.The Functors ExtnΛ Using Injectives
9.Extn and n-Extensions
10.Another Characterization bfDerived Functors
11.The Functor TotΛn
12.Change of Rings
Ⅴ.The Kunneth Formula
1.Double Complexes
2.The Kiinneth Theorem
3.The Dual Kunneth Theorem
4.Applications of the Kunneth Formulas