您好,欢迎来到聚文网。 登录 免费注册
数学分析原理(英文版原书第3版典藏版)/华章数学原版精品系列

数学分析原理(英文版原书第3版典藏版)/华章数学原版精品系列

  • 出版社: 机械工业
  • 作者: (美)沃尔特·鲁丁
  • 商品条码: 9787111619543
  • 版次: 1
  • 开本: 16开
  • 页数: 342
  • 出版年份: 2019
  • 印次: 1
定价:¥69 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书涵盖了高等微积分学的丰富内容,*精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。
作者简介
沃尔特·鲁丁(Walter Rudin)1953年于杜克大学获得数学博士学位. 曾先后执教于麻省理工学院、罗切斯特大学、威斯康星大学麦迪逊分校、耶鲁大学等. 他的主要研究兴趣集中在调和分析和复变函数. 除本书外,他还著有《Functional Analysis》和《Real and Complex Analysis》等其他名著,这些教材已被翻译成十几种语言,在世界各地广泛使用.
目录
Preface Chapter 1 The Real and Complex Number Systems 1 Introduction 1 Ordered Sets 3 Fields 5 The Real Field 8 The Extended Real Number System 11 The Complex Field 12 Euclidean Spaces 16 Appendix 17 Exercises 21 Chapter 2 Basic Topology 24 Finite, Countable, and Uncountable Sets 24 Metric Spaces 30 Compact Sets 36 Perfect Sets 41 Connected Sets 42 Exercises 43 Chapter 3 Numerical Sequences and Series 47 Convergent Sequences 47 Subsequences 51 Cauchy Sequences 52 Upper and Lower Limits 55 Some Special Sequences 57 Series 58 Series of Nonnegative Terms 61 The Number e 63 The Root and Ratio Tests 65 Power Series 69 Summation by Parts 70 Absolute Convergence 71 Addition and Multiplication of Series 72 Rearrangements 75 Exercises 78 Chapter 4 Continuity 83 Limits of Functions 83 Continuous Functions 85 Continuity and Compactness 89 Continuity and Connectedness 93 Discontinuities 94 Monotonic Functions 95 Infinite Limits and Limits at Infinity 97 Exercises 98 Chapter 5 Differentiation 103 The Derivative of a Real Function 103 Mean Value Theorems 107 The Continuity of Derivatives 108 L'Hospital's Rule 109 Derivatives of Higher Order 110 Taylor’s Theorem 110 Differentiation of Vector-valued Functions 111 Exercises 114     Chapter 6 The Riemann-Stieltjes Integral 120     Definition and Existence of the Integral 120     Properties of the Integral 128     Integration and Differentiation 133     Integration of Vector-valued Functions 135     Rectifiable Curves 136     Exercises 138     Chapter 7 Sequences and Series of Functions, 143     Discussion of Main Problem 143     Uniform Convergence 147     Uniform Convergence and Continuity 149     Uniform Convergence and Integration 151     Uniform Convergence and Differentiation 152     Equicontinuous Families of Functions 154     The Stone-Weierstrass Theorem 159     Exercises 165     Chapter 8 Some Special Functions 172     Power Series 172     The Exponential and Logarithmic Functions 178     The Trigonometric Functions 182     The Algebraic Completeness of the Complex Field 184     Fourier Series 185     The Gamma Function 192     Exercises 196     Chapter 9 Functions of Several Variables 204     Linear Transformations 204     Differentiation 211     The Contraction Principle 220     The Inverse Function Theorem 221     The Implicit Function Theorem 223     The Rank Theorem 228     Determinants 231     Derivatives of Higher Order 235     Differentiation of Integrals 236     Exercises 239     Chapter 10 Integration of Differential Forms 245     Integration 245     Primitive Mappings 248     Partitions of Unity 251     Change of Variables 252     Differential Forms 253     Simplexes and Chains 266     Stokes’ Theorem 273     Closed Forms and Exact Forms 275     Vector Analysis 280     Exercises 288     Chapter 11 The Lebesgue Theory 300     Set Functions 300     Construction of the Lebesgue Measure 302     Measure Spaces 310     Measurable Functions 310     Simple Functions 313     Integration 314     Comparison with the Riemann Integral 322     Integration of Complex Functions 325     Functions of Class [WTHT]L[WT]\\+2 325     Exercises 332     Bibliography 335     List of Special Symbols 337     Index 339

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网