您好,欢迎来到聚文网。 登录 免费注册
实分析与复分析(英文版原书第3版典藏版)/华章数学原版精品系列

实分析与复分析(英文版原书第3版典藏版)/华章数学原版精品系列

  • 出版社: 机械工业
  • 作者: (美)沃尔特·鲁丁
  • 商品条码: 9787111619550
  • 版次: 1
  • 开本: 16开
  • 页数: 416
  • 出版年份: 2019
  • 印次: 1
定价:¥79 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。
作者简介
沃尔特·鲁丁(Walter Rudin) 1953年于杜克大学获得数学博士学位。曾先后执教于麻省理工学院、罗切斯特大学、威斯康星大学麦迪逊分校、耶鲁大学等。他的主要研究兴趣集中在调和分析和复变函数上。除本书外,他还著有《Functional Analysis》(泛函分析)和《Principles of Mathematical Analysis》(数学分析原理)等其他名著。这些教材已被翻译成十几种语言,在世界各地广泛使用。
目录
Preface     Prologue: The Exponential Function     Chapter 1 Abstract Integration 5     Set-theoretic notations and terminology 6     The concept of measurability 8     Simple functions 15     Elementary properties of measures 16     Arithmetic in [0, ∞] 18     Integration of positive functions 19     Integration of complex functions 24     The role played by sets of measure zero 27     Exercises 31     Chapter 2 Positive Borel Measures 33     Vector spaces 33     Topological preliminaries 35     The Riesz representation theorem 40     Regularity properties of Borel measures 47     Lebesgue measure 49     Continuity properties of measurable functions 55     Exercises 57     Chapter 3 [WTBX]L[WTBZ]\\+p-Spaces 61     Convex functions and inequalities 61     The [WTBX]L[WTBZ]\\+p-spaces 65     Approximation by continuous functions 69     Exercises 71     Chapter 4 Elementary Hilbert Space Theory 76     Inner products and linear functionals 76     Orthonormal sets 82     Trigonometric series 88     Exercises 92     Chapter 5 Examples of Banach Space Techniques 95     Banach spaces 95     Consequences of Baire’s theorem 97     Fourier series of continuous functions 100     Fourier coefficients of [WTBX]L[WTBZ]\\+1-functions 103     The Hahn-Banach theorem 104     An abstract approach to the Poisson integral 108     Exercises 112     Chapter 6 Complex Measures 116     Total variation 116     Absolute continuity 120     Consequences of the Radon-Nikodym theorem 124     Bounded linear functionals on Lp 126     The Riesz representation theorem 129     Exercises 132     Chapter 7 Differentiation 135     Derivatives of measures 135     The fundamental theorem of Calculus 14~     Differentiable transformations 150     Exercises 156     Chapter 8 Integration on Product Spaces 160     Measurability on cartesian products 160     Product measures 163     The Fubini theorem 164     Completion of product measures 167     Convolutions 170     Distribution functions 172     Exercises 174     Chapter 9 Fourier Transforms 178     Formal properties 178     The inversion theorem 180     The Plancherel theorem 185     The Banach algebra [WTBX]L[WTBZ]\\+1 190     Exercises 193     Chapter 10 Elementary Properties of Holomorphic     Functions 196     Complex differentiation 196     Integration over paths 200     The local Cauchy theorem 204     The power series representation 208     The open mapping theorem 214     The global Cauchy theorem 217,     The calculus of residues 224     Exercises 227     Chapter 11 Harmonic Functions 231     The Cauchy-Riemann equations 231     The Poisson integral 233     The mean value property 237     Boundary behavior of Poisson integrals 239     Representation theorems 245     Exercises 249     Chapter 12 The Maximum Modulus Principle 253     Introduction 253     The Schwarz lemma 254     The Phragmen-Lindel6f method 256     An interpolation theorem 260     A converse of the maximum modulus theorem 262     Exercises 264     Chapter 13 Approximation by Rational Functions 266     Preparation 266     Runge's theorem 270     The Mittag-Leffier theorem 273     Simply connected regions 274     Exercises 276     Chapter 14 Conformal Mapping 278     Preservation of angles 278     Linear fractional transformations 279     Normal families 281     The Riemann mapping theorem 282     The class [WTHT]S[WTBZ] 285     Continuity at the boundary 289     Conformal mapping of an annulus 291     Exercises 293 Chapter 15 Zeros of Holomorphic Functions 298 Infinite products 298 The Weierstrass factorization theorem 301 An interpolation problem 304 Jensen’s formula 307 Blaschke products 310 The Miintz-Szasz theorem 312 Exercises 315 Chapter 16 Analytic Continuation 319 Regular points and singular points 319 Continuation along curves 323 The monodromy theorem 326 Construction of a modular function 328 The Picard theorem 331 Exercises 332 Chapter 17 [WTBX]H[WTBZ]\\+p-Spaces 335 Subharmonic functions 335 The spaces Hp and N 337 The theorem of F. and M. Riesz 341 Factorization theorems 342 The shift operator 346 Conjugate functions 350 Exercises 352 Chapter 18 Elementary Theory of Banach Algebras 356 Introduction 356 The invertible elements 357 Ideals and homomorphisms 362 Applications 365 Exercises 369 Chapter 19 Holomorphic Fourier Transforms 371 Introduction 371 Two theorems of Paley and Wiener 372 Quasi-analytic classes 377 The Denjoy-Carleman theorem 380 Exercises 383 Chapter 20 Uniform Approximation by Polynomials 386 Introduction 386 Some lemmas 387 Mergelyan’s theorem 390 Exercises 394     Appendix: Hausdorff’s Maximality Theorem 395     Notes and Comments 397     Bibliography 405     List of Special Symbols 407     Index 409

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网