您好,欢迎来到聚文网。 登录 免费注册
代数拓扑基础教程(英文版)

代数拓扑基础教程(英文版)

  • 字数: 314
  • 出版社: 世界图书出版公司
  • 作者: (美)曼斯|责编:高蓉
  • 商品条码: 9787510004803
  • 版次: 1
  • 开本: 24开
  • 页数: 428
  • 出版年份: 2009
  • 印次: 4
定价:¥86 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
这本书的目的是作为一 个代数拓扑学课程的教科书 在研究生阶段的开始。主要 内容包括紧2流形的分类、 基本群、覆盖空间、奇异同 调理论和奇异上同调理论( 包括杯积和Poincare和 Alexander的对偶定理)。 它包含了作者早期著作《代 数拓扑学:导论》(GTM 56)的前五章以及他几乎所 有的著作《奇异同调理论》 (GTM 70)中的材料。这 两本书中的材料已经被修改 ,修正,更新。
目录
Preface Notation and Terminology CHAPTER Ⅰ Two-Dimensional Manifolds 1.Introduction 2.Definition and Examples of n-Manifolds 3.Orientable vs.Nonorientable Manifolds 4.Examples of Compact, Connected 2-Manifolds 5.Statement of the Classification Theorem for Compact Surfaces 6.Triangulations of Compact Surfaces 7.Proof of Theorem 5.1 8.The Euler Characteristic of a Surface References CHAPTER Ⅱ The Fundamental Group 1.Introduction 2.Basic Notation and Terminology 3.Definition of the Fundamental Group of a Space 4.The Effect of a Continuous Mapping on the Fundamental Group 5.The Fundamental Group of a Circle IS Infinite Cyclic 6.Application: The Brouwer Fixed-Point Theorem in Dimension 2 7.The Fundamental Group of a Product Space 8.Homotopy Type and Homotopy Equivalence of Spaces References CHAPTER Ⅲ Free Groups and Free Products of Groups 1.Introduction 2.The Weak Product of Abelian Groups 3.Free Abelian Groups 4.Free Products of Groups 5.Free Groups 6.The Presentation of Groups by Generators and Relations 7.Universal Mapping Problems References CHAPTER Ⅳ Seifert and Van Kampen Theorem on the Fundamental Group of the Union of Two Spaces.Applications 1.Introduction 2.Statement and Proof of the Theorem of Seifert and Van Kampen 3.First Application of Theorem 2.1 4.Second Application of Theorem 2.1 5.Structure of the Fundamental Group of a Compact Surface 6.Application to Knot Theory 7.Proof of Lemma 2.4 References CHAPTER Ⅴ Covering Spaces 1.Introduction 2.Definition and Some Examples of Covering Spaces 3.Lifting of Paths to a Covering Space 4.The Fundamental Group of a Covering Space 5.Lifting of Arbitrary Maps to a Covering Space 6.Homomorphisms and Automorphisms of Covering Spaces 7.The Action of the Group π(X,x) on the Set p-1 (x) 8.Regular Covering Spaces and Quotient Spaces 9.Application: The Borsuk-Ulam Theorem for the 2-Sphere

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网